68 research outputs found

    Extracting stability increases the SNP heritability of emotional problems in young people

    Get PDF
    Twin studies have shown that emotional problems (anxiety and depression) in childhood and adolescence are moderately heritable (~20–50%). In contrast, DNA-based β€˜SNP heritability’ estimates are generally <15% and non-significant. One notable feature of emotional problems is that they can be somewhat transient, but the moderate stability seen across time and across raters is predominantly influenced by stable genetic influences. This suggests that by capturing what is in common across time and across raters, we might be more likely to tap into any underlying genetic vulnerability. We therefore hypothesised that a phenotype capturing the pervasive stability of emotional problems would show higher heritability. We fitted single-factor latent trait models using 12 emotional problems measures across ages 7, 12 and 16, rated by parents, teachers and children themselves in the Twins Early Development Study sample. Twin and SNP heritability estimates for stable emotional problems (N = 6110 pairs and 6110 unrelated individuals, respectively) were compared to those for individual measures. Twin heritability increased from 45% on average for individual measures to 76% (se = 0.023) by focusing on stable trait variance. SNP heritability rose from 5% on average (n.s.) to 14% (se = 0.049; p = 0.002). Heritability was also higher for stable within-rater composites. Polygenic scores for both adult anxiety and depression significantly explained variance in stable emotional problems (0.4%; p = 0.0001). The variance explained was more than in most individual measures. Stable emotional problems also showed significant genetic correlation with adult depression and anxiety (average = 52%). These results demonstrate the value of examining stable emotional problems in gene-finding and prediction studies

    Increased expression of phosphorylated forms of RNA-dependent protein kinase and eukaryotic initiation factor 2Ξ± may signal skeletal muscle atrophy in weight-losing cancer patients

    Get PDF
    Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the Ξ±-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2Ξ± have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2Ξ± were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2Ξ± (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2Ξ±. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2Ξ± (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients

    Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinase

    Get PDF
    Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kgβˆ’1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2Ξ± phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-ΞΊB (NF-ΞΊB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia

    Using twins to better understand sibling relationships

    Get PDF
    We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were usedβ€”the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children’s relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influenceβ€”dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations

    Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study

    Get PDF
    Background: Both genetic and environmental factors are known to affect body mass index (BMI), but detailed understanding of how their effects differ during childhood and adolescence is lacking. Objectives: We analyzed the genetic and environmental contributions to BMI variation from infancy to early adulthood and the ways they differ by sex and geographic regions representing high (North America and Australia), moderate (Europe), and low levels (East Asia) of obesogenic environments. Design: Data were available for 87,782 complete twin pairs from 0.5 to 19.5 y of age from 45 cohorts. Analyses were based on 383,092 BMI measurements. Variation in BMI was decomposed into genetic and environmental components through genetic structural equation modeling. Results: The variance of BMI increased from 5 y of age along with increasing mean BMI. The proportion of BMI variation explained by additive genetic factors was lowest at 4 y of age in boys (a2 = 0.42) and girls (a2 = 0.41) and then generally increased to 0.75 in both sexes at 19 y of age. This was because of a stronger influence of environmental factors shared by co-twins in midchildhood. After 15 y of age, the effect of shared environment was not observed. The sex-specific expression of genetic factors was seen in infancy but was most prominent at 13 y of age and older. The variance of BMI was highest in North America and Australia and lowest in East Asia, but the relative proportion of genetic variation to total variation remained roughly similar across different regions. Conclusions: Environmental factors shared by co-twins affect BMI in childhood, but little evidence for their contribution was found in late adolescence. Our results suggest that genetic factors play a major role in the variation of BMI in adolescence among populations of different ethnicities exposed to different environmental factors related to obesity

    The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse

    Get PDF
    Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≀5%), intermediate (6–19%), or extreme (β‰₯20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process

    Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana

    Get PDF
    The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide

    Ciliopathies: an expanding disease spectrum

    Get PDF
    Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing β€œoutside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features
    • …
    corecore